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Multicast Queueing Delay: Performance Limits and
Order-Optimality of Random Linear Coding

Randy Cogill, Member, |IEEE, and Brooke ShradeMember, |IEEE

Abstract—In this work we analyze the average queue backlog ~ While the delay performance of coding schemes has re-
for transmission of a single multicast flow consisting of M  ceived less attention than the throughput performance, signif-
destination nodes in a wireless ne_twork. In the r_nodel we consider, joant progress has been made in previous work. The delay or
the channel between every pair of nodes is an independent . . . -
identically distributed packet erasure channel. We first develop completlon—tlmg performance_ for Qne-hop mL_JItlcast with link
a lower bound on the average queue back|og achievable by anyerasures was first CharaCterlzed N [10], Wh|Ch ShOWS tha.t a
transmission strategy; for a single-hop multicast transmission, block-based random linear coding scheme offers significant
our bound indicates that the queue size must scale as at leastdelay improvements over packet scheduling strategies. The
Q(In(M)). Next, we generalize this result to a multihop network o in [10] does not address queueing delay, but numerous
and obtain a lower bound on the queue backlog as it relates to .
the minimum-cut capacity of the network. We then analyze the SL_JbS(_aq_uent works do. In [12], the a_uthors consider a network
queue backlog for a strategy in which random linear coding is With finite memory or buffers for storing packets and a scheme
performed over groups of packets in the queue at the source for coding over packets that arrive through a random process
node of a single-hop multicast. We develop an upper bound on for a single unicast flow. They provide a framework for this
the average queue backlog for the packet-coding strategy to show problem that allows for computation of the delay and queue
that the queue size for .'[hIS strategy scales a®(In(M)). Our blockina/l babili d d h k di
results demonstrate that in terms of the queue backlog for single- P'OCKING/IOSS proba llity and demonstrate that packet coding
hop multicast, the packet coding strategy is order-optimal with Schemes can offer good throughput performance under the
respect to the number of receivers. constraint of limited memory for storing packets at intermedi-
ate nodes. A bulk-service queueing model for random linear
coding over a unicast flow is developed in [13] and numerical
results on the queueing delay demonstrate that by adapting

In this paper we analyze the size of the queue backlog fibre code block size to the number of buffered packets, coding
a single multicast flow transmitted over a network with linkschemes can offer good delay performance when the arrival
subject to packet erasures. A primary focus of our work is iate is small. The work in [7] provides analytical bounds on
establishing performance limits that characterize the minimutime completion time and stable throughput for random linear
achievable expected queue length in the network. We alsnding across multiple multicast flows; the results indicate that
provide a closed-form upper bound on the expected quealthough coding across flows requires unintended recipients
length when a random linear coding scheme is applied fot@ decode packets, the coding strategy can provide larger
one-hop multicast flow. throughput than uncoded transmission. In contrast to the block-

The throughput for multicast transmissions in a wireledsased coding schemes considered in the works above, [14]
network and the role of coding schemes in achieving godaatroduces an online or window-based coding scheme and
performance has been addressed extensively in the past deqaigoses a new packet acknowledgment strategy for random
Random linear coding of packets in a multicast flow wad@ear coding based on acknowledging degrees of freedom
first introduced in [11], which provides a lower bound on theeceived. The authors also provide a queue-length analysis
probability that all multicast receivers are able to successfuligr their policy and the queue size is shown to grow more
decode the message sent by the source and shows thatdlualy with load factor than a baseline acknowledgment
scheme can outperform a randomized routing scheme. Tdimtegy. Finally, while most works cited above address delay
achievable multicast throughput in a wireless erasure netwgr&rformance for intra-flow coding, [1] considers coding across
is characterized with a minimum-cut representation in [9] arfbws and shows that significant delay penalties are incurred
linear network coding is shown to be sufficient for achievinfpr synchronized coding across flows, but asynchronous coding
this result. of packets across flows can reduce the queueing delay.

o _ Our work focuses on the multicast problem and differs from

R. Cogill is with the Department of Systems and Information En- . . . . .
gineering, University of Virginia, Charlottesville, VA, 22904 USA. E-Previous work in the following ways. First, we provide a
mail: rcogill@virginia.edu. B. Shrader is with the Massachusetts Institutower bound on the minimum achievable queue length for
of Technology, Lincoln Laboratory, Lexington, MA 02420 USA. E-mail:any packet transmission strategy. For the one-hop multicast
brooke.shrader@Il.mit.edu. . .

This work appeared in part at the 2009 Allerton Conference on Commurﬂ—mblem' our lower bound is a closed-form expression that
cation, Control and Computing [6]. provides insight on the best-case behavior of the queue length

This work was sponsored by the Department of Defense under Air Forgg 5 function of the number of multicast receivers and the link
Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and r

C- . . .
ommendations are those of the author and are not necessarily endorsegoli; probability. For mUIt'Ca_St_ ina general erasure network, our
the United States Government. lower bound relates the minimum achievable queue length to

I. INTRODUCTION



the minimum-cut capacity of the network. Lastly, our uppawould use this information, together with the reception history
bound on the queue length for a packet coding strategy alloefseach packet in the queue to decide which packet to send
us to conclude that for the one-hop multicast problem, randamaxt. The complexity and information requirements of such a
linear coding is order-optimal with respect to the number aicheme are clearly very high. On the other hand, without chan-
multicast receivers. nel state information, throughput of such a scheme is no better
than the throughput of the simple retransmission scheme. To

[I. THE PROBLEM see why this is true, if the system is ignorant of the channel

We consider the problem of multicast transmission of da Etlates before transmitting a packet, the expected number of

. . . Imes a packet must be transmitted before successful reception
packets from a single transmitter to a groupMdf receivers.

We model a single multicast flow in which packets arrive astt'” must be greater than or equal to (1), even if transmissions
are attempted out of order.

the transmitter or source node according to a Bernoulli Process - ihe one-hoo multicast problem. it is well known that
with rate\. At other nodes in the network, a transmitted pack(ﬁ% P cast p o Lo
. . . i L e queue can be stabilized for all arrival rates satisfying
is received with some fixed probability, independent of other . ; : .

g using simple random linear coding schemes (see

receivers and of past receptions. Our goal is to charactertg ' for example). These schemes operate by collecting large

the expected number of pacl_<ets queued n _the networkép ks of packets in the queue, then transmitting encoded
the steady state, and to devise a transmission scheme aﬁ(

minimizes this average aueue backlod. thereby minimizin ﬂ?ac ets formed from this block until all receivers can decode
queueing delay geq 9 y 9 % packets in the block. To stabilize ratesapproachingg,

arbitrarily large blocks of packets must be formed. The block
coding operation must create a backlog that grows with the
—/VO size of the block. So, it seems that schemes that code over

A\ "" fixed-length k?lqck_s_ of packets are not well suited for the
problem of minimizing expected backlog.

IIl. M AIN RESULTS

Fig. 1. Queueing system for one-hop multicast. In this paper we establish the following results about the
expected steady state queue length for multicast.

Most of our work in this paper focuses on the one-hop mul- .
ticast problem, in which each of thel receivers is connected * We show that for the one-hop multicast problem, the
to the source by a single link, as shown in Figure 1. In this €XPected steady-state queue length of any strategy must
problem, there is a single queue of packets and the transmitter Satisfy
makes a transmission in every time slot. Each receiver receives L 3 (Aln(M) -1
a transmitted packet with probability. Even for the simple lim inf B[Q(1)] = 1 <_1n(1_q)> ’
one-hop multicast problem, minimizing expected queue length . .
is decepptively diffiF::uIt. To see Whygthisp is theqcase, firgt whe_reQ(t) |s.th(.a number of packets in the source queue
consider the simple scheme that retransmits the head of line at time ¢. Th|§ IS true. even for strategies that exploit
packet until it has been received by afl receivers. As shown channel state information.

in [7], the expected number of time slots that a packet stays® Using the same techniques, we establish a lower bound
at the head of the queue is greater than or equal to on the expected steady-state queue length for a general
erasure network, where multicast receivers may be lo-

In(M +1)+0.3 1) cated multiple hops away from the source and packets
—In(1—-q) may be queued at intermediate nodes in the network. This
lower bound relates the queue length to the minimum-cut
capacity of the network.
Ne _—nl-q (2)  * For the one-hop multicast problem, we show the queue
In(M+1)+0.3 length process of a simple random linear coding scheme

This means that the expected queue length becomes arbitrarily (&t packet departure times) satisfies
large for arrival rates approaching some value greater than ;&

ZE[Q(tk)] <

k=0

Therefore, this scheme cannot stabilize arrival rates satisfying

the right-hand side of (2). In other words, for any one lim sup
can chooseM sufficiently large so that the expected queue n—oo M1
length under the retransmission strategy is arbitrarily far from 2
optimal. 41n(M) (g) + (83/n(31) +6) %
. S q q

We could instead approach the problem of minimizing i _ )
expected queue length as a purely control theoretic problem. Heret. is the time at which the:-th block of packets
Rather than simply transmitting the head of line packet, in each departs the system.
time slot any packet in the queue can be transmitted. When
the state of each channel connecting the transmitter to e&x if the queue length process at departure times corresponds
receiver is known before transmitting a packet, a controlléw the true queue length process, then for the one-hop multicast



problem, the expected queue length of the random linelaet A(¢) be the random variable witd(¢) = 1 if there is an
coding strategy is order optimal with respect to the numbarrival at time slott and A(¢) = 0 otherwise. LetS(t) be the
of receivers. random variable with5(t) = 1 if the receiver is connected at
time slott and S(¢) = 0 otherwise. Finally, letD(¢) be the
number of departures from the queue at titne

In terms of A, D, and S, properties (1), (2), and (3) are

Here we present a lower bound on the minimum achievallgptured by the following condition. For atl< ¢, we require
steady state expected queue length for one-hop multicaght p satisfies

Specifically, we show that backlog must scale at least logarith-

t—1 T—1 t—1
mically with M, the number of receivers. In Section II-C, we ZD(k) < Z A(k) + Z S(k). (3)
show that the backlog of the code over queue contents strategy =0 =0 e

scales logarithmically with\/. This implies that coding over Properties (1) and (2) imply this condition for= ¢ andr = 0,

the queue contents is order-optimal with respect to the numbggne ctively. Showing that property (3) implies this condition

of receivers for one-hop multicast. The theorem that will b, o other  is a little less obvious. To show this, consider

proved in this section is the following: the set of packets that arrived in the system during the interval
[0, — 1]. We can partition this set into two sety; and As,
whereA; is the set of packets arriving in the interya) r — 1]

A. Lower bounds on achievable backlog for one-hop multicast

Theorem 1. Under any strategy and A, is the set of packets arriving in the intenjal ¢t — 1].
3 /Aln(M) — 1 The total number of departures in the interf@lt — 1] equals
liminf E[Q(t)] > - () . the total number of packets frord; that depart the system
tree 4\ ~In(1-q) in the interval[0, t — 1] plus the total number of packets from

A, that depart the system in the intenjal¢ — 1]. The total
number of departures from; is, by property (1), less than

The proof of this theorem is at the end of this section, aftdf equal to the total number of packets.iy, which is

several supporting lemmas are established. !
The lower bound presented in this section makes very few ZA(k)-
assumptions on the strategy used. We will start by stating these k=0
assumptions in words, then give a more precise condition ti&ince all packets ind, arrived on or afterr, property (3)
must be satisfied by all policies. implies that no connection prior to can be used to serve a
To make the motivation for our assumptions clear, fir§tacket inAx. This, together with property (2), implies that
consider a system composed of a single transmitter andhg total number of departures from, is less than or equal
single receiver. Packets arrive at the transmitter according téPathe total number of connections in the interyalt — 1],
Bernoulli process with rata. In each time slot the transmitterwhich is "y
is connected to the receiver with probabilityindependent of Z S(k).
past connections. =
Various strategies could be used to transmit packets to 51_3

receiver. Regardless of the strategy used, we always aSSlﬂgSartures fromd, and A, gives (3).

that the systgm possesses several properties: Using property (3), we have the following lemma. This
(1) Atany time, the total number of packets that have be¢@mma is very similar to a well known result that obtains
removed from the queue does not exceed the total numlae&'ue,v,e length process by applying a reflection mapping to a

of packets that have entered the queue. netput process (see Proposition 6.3 in [2], for example).
(2) At any time, the total number of packets that have been

removed from the queue does not exceed the total number

of time slots where the transmitter has been connected toL 1K —0.th | h at ti i
the receiver. So, even if coding is applied, we do not emma 1 If Q(0) =0, the queue length at timesatisfies

ﬁally, summing these upper bounds on the number of

consider schemes that compress packets. We can only -1
transmitm packets to the receiver if the transmitter and Q(t) = max > (A(k) — S(k))
receiver have been connected in at leastime slots. - k=T

(3) Connections cannot be used to transmit future arrivafer any service policy with departures satisfying (3). Moreover,
In other words, the strategy must bausal. We cannot this inequality is tight when packets depart the queue as
send information about a packet that has not yet arrivegrvices occur.
in the queue.

(4) The queue starts out empty. Since we are concerned
with steady-state queue length, this is without loss of  pygof: At any timet,
generality.

To make these conditions precise, we'll introduce some Qt) = Z(A(k> — D(k))
notation. LetQ(¢) be the length of the source queue at titne



Since . a lower bound in terms of the expected value of the minimum
i D) < Ti: Ak) + i S(k) of binomial random variables.

for all = € [0, ], the queue length satisfies .
€[04 q g Lemma 2: Let Q(t) be the queue length of the multicast

t—1 T—1 t—1 . .
system at time. Under any policy,
Q) = D AK) =Y A(k) - S(k)
liminf E[Q(t)] > sup{An — far(n)},
1 t—o00 n>0
= Z(A(k) - S(k)) where fy(n) is the expected minimum ol independent

k=T binomial random variables, each with parametgrs:).

for all 7 € [0, t]. Since this holds for alf, clearly
t—1
Qt) > max {;(A(k) — S(k))} . Proof: The total number of packets in the queue at time
) - t—1 t—1
The fact thqt the inequality is tight if pz_ickets_ depa_rt the Qt) = ZA(k) _ ZD(k)'

gueue as services occur can be shown by induction. Since we = o

start withQ(0) =
Q1) = max{0, A(0) - 5(0)}

{0 } iD(k:) < mjin{z_:Rj(k)}
: k=0 k=0

Note that for allt > > 0,

= maxq > (A(k) - S(k))
=27 = r—1 t—1
Now suppose(t) satisfies < Z A(k) + mjin {Z Sj(k)} )
k=0 k=1
t—1
_ _ By Lemma 1,Q(t) satisfies
Q(t) = max, {;(A(k) S(k))} . y Q) -
Then the queue length at tintet- 1 is )= nax, {Z Ak ~ min {Z Sj(k)}} :
k=1

Q(t + 1) = max{0,Q(t) + A(t) — S(1)} By Jensen's inequality,

= max {O nax) {]CZ(A(IC) - S(k)) }} E[Q(1)] .
tgljlgco{ZA mln{z S](k)}}l
k=1

¢ >
=, max {Z(A(k) - S(k;))} :

k=1
[ > Jnax {E ZA(k) - 2 Sj(k)H }
= max {A( - )= Fult =)}
We will now extend these results to the multicast case. Let = max {An — fys(n)}
S;(t) be the random variable wit;(¢) = 1 if the transmitter t2n20

is connected to thg-th receiver at time slot, and.S;(t) =0 where fy;(n) is the expected minimum af/ independent bi-
otherwise. LetR;(t) be the number of packets received byiomial random variables, each with parameters:). Finally,

receiver;j at timet. EachR;(t) must satisfy the property (3).
(s, = s}

Y

That is, for allT < ¢, the total number of packets received by 1igg1fE[Q(t)] Jim
receiverj up to timet — 1 satisfies )

sup {An — far(n)} .

SUCE SPCES SETC

k=0 |

Also, since packets do not leave the queue until they have
been received by all receivers, the total number of departures

in the interval[0, ¢ — 1] satisfies The following Lemma is used in the proof of Theorem 1.
t—1 t—1
> " D(k) < min {ZRj(k)}
k=0 7 Ue=o Lemma 3: Forallz > a >0,

Under this condition alone, we can establish a lower bound on a\ e

the achievable expected queue backlog. The next lemma gives (1 - 5) <e™



Proof: It is well known that

lim (1 - ﬁ)x — o,

In the remainder of the proof, we will show that — 2)* is
monotonically increasing for. > a.
Taking the derivative yields

w0 = 0 (00 %)

The logarithmic part can be rewritten as

n(1-2) -

For all z > 0, clearly z > In(1 + 2

—ln(1+ a4 >zo
r—a

Tr—a

for all x > a. Also,

for all x > a. So,

for all x > a.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: By Lemma 2, for anyn > 0,

liminf E[Q(t)] > An — fu(n),

t—o00

where

fu(n) = Emin{Xy,..., X},

is the expected minimum aff independent binomial random

variables X, ..
Let

., X each with parameterg), n).

00 =3 (hir-g)

The proof will proceed by showing that

Si(—m&—@)

for all M > 1. Therefore, for allAf > 1 we will have the

lower bound
3 (An(M) -1
EHE =

fu(n(M)) (4)

An(M) = fu(n(

Note that the largest value taken by afy n) binomial
random variable is». To show (4), we will use the upper
bound
E[min{Xj,..

SXuY o= ) aP(min{Xy,..., Xy }=2)

< ZnP(min{Xl,...,XM}:x)
r=1
= pP(min{Xy,..., Xy} >0).

Itis the case thahin{X;,..., X/} > Oifand only if X; > 0
for all i. The eventX; > 0 occurs with probabilityl — (1—g)™.

Since X4, ..., X, are independent,
P(min{Xl,...,XM} > 0)
= P(X;>0)---P(Xy >0)
n\ M
= (1-(1-9q")

— (1 _ enln(l—q))M.
Usingn = n(M) gives

1— eﬁ(]V[) In(l1-q) _ 1— 6_(3/4) In(M)

= 1-M31
M1/4
- 1-=
Since M1/4 < M for M > 1, we can use Lemma 3 to obtain
MM
P(min{Xl,...,XM}>0) = (1— )
M
< e—Ml/“.
To bound fj; (n(M)),
o 3 (D) N\ s
~ 4\ —-In(l-9q)
3 1 1/4
= - In(M)e M
i (Cwr—g ) mon
Note that

ln(M)e—M1/4 eln(1n(M))e_Ml/4

e(ln(ln(M))—Ml/4)

Sincez!'/? > In(x) for 2 > 0 and bothz!/? andIn(z) are
monotonically increasing fox > 0, M/ > In(In(M)) for
all M > 1. Therefore,ln(lngM)) —MY4t<0oforall M >1,
or equivalentlyln(M)e=M" * < 1forall M >1. So,

(5w

fau(m(M)) <

for all M > 1, giving the bound

lminf BQ()] > N(M) — fu(R(M))

e



Another interpretation of the bound presented here relates I ty
to the response time of a parallel fork-join queue as described
in [3]. The fork-join queue is a model employed for parallel
processing systems in which an arriving job or customer S
is directed toM parallel, independent servers and service
completion can only take place when alf servers have
completed the task. In [3] results for a continuous-time fork-
jomn queue. are prese_n_ted E.ind !t IS shown that the aVeral%ge. 2. Simple multicast network and a cut separating the sduooe each
response time (or waiting time in the queue)($In(M)). iorminal.
The multicast problem we consider in this work might also
be modeled as a fork-join queue in which each parallel
server represents the process of transmission to one thhe.I.he capacity of the cut is given by
destination nodes. By Little’s Law, the average queue length
is equal to)\ times the average response time, so our result
that the average queue length scales logarithmically with
is supported by the previous results on fork-join queues. Z 1- H (1 —aij)

1 t2

i€F, j:(4,5)€EE.

B. Lower bounds on achievable backlog for general erasure This gives the maximum rate which packets can be transmitted
networks across the cut. At best, packets can be transmitted simultane-

To provide further insight on our bound on achievable bacRUSY from each vertex on the frontier, leading to the sum
log for the one-hop multicast problem, we next develop simil4? this expression. For each vertex in the frontier, 9”'y one
results for the generalized problem of emasure network. This edge needs to be connected to transmit a packet in a given

network is described by an acyclic directed grapk= (V, E) time slot, leading to the product in this expression. Since all
with source vertex and M terminal vertices .. .. . t,;. Time packets traveling from the source to some terminal must cross

is slotted and in each time slot, edgej) € E is connected this cut, the capacity of the cut gives an upper bound on the

with probability ¢;;, independent of other edges and past ed§@U'C€ rates that can be stably supported by the network. It is
connections. An attempted packet transmission from nodélso knoyvn that the minimum capacity over all cuts is exactly
to node j is successful in a given time slot if edde, ;) the maximum source rate that can be stably supported [9].

is connected. In the model we consider here, data packetset A(k) and D(k) denote the number of packets entering
are produced at the source vertex according to a Berno@hd departing the network in time slbt The total number of
process with rate\, and each packet must be multicast to aackets queued in the network at time slas

terminal vertices. This model incorporates the broadcast nature

of wireless networks, since packets transmitted by a node are =1 =1
heard by all neighboring nodes. However, this model assumes Q(t)=>_ A(k) - > D(k).
that multiple, distinct packets might be received by a node in k=0 k=0

a given time slot. Also, here we assume all successful packet

transmissions are acknowledged by the receiving nodes, &®i S¢.j)(t) be a random variable witls(; ) () = 1 if edge

acknow|edgments are sent error-free. (Z,j) is connected in time SlQI andS(m-) (t) = 0 otherwise.
Due to time-varying link connectivity and contention foMVe can bound the total number of departures in any interval

link access, packets may be queued at multiple network nod@ considering the connectivity of links crossing any cut. For

Various strategies can be used for routing packets through 8/ cutc and any times; < {5,

network, scheduling link access at the nodes, and possibly

coding among packets in the network. Under any possible-1 t1—1 ta—1

strategy, what is the smallest expected queue backlog we can D(k) < > A(k)+> > [1— J] (1 = Suy (k)
accumulate at all network nodes? Here we outline a frameworko k=0 k=t i€ F. §:(i,5)€E.

for analyzing this limit of achievable queue backlog in erasure 5)
networks. To understand where this bound comes from, suppose we

The characterization of erasure network capacity considétart with Q(0) = 0. The total number of departures in
the capacity across amyt in the network. A cut is a partition the interval [0, ¢, — 1] cannot be any greater than the total
subsets, denoted d& and V., wheres € V, andt; € V, arriving in the intervallt;, ¢, — 1], the total number of these
for some terminal vertex;. We letC denote the set of all Packets departing the network cannot be greater than the
cuts in the network. The set of edges contained in a cut!@al number of connections crossing any cut in the interval

E. = {(i,j) € E|i € V,,j € V.}. Finally, we let thefrontier ~[t1,?2 — 1]. Summing these bounds for the intervllst, — 1]
of the cut be the set of vertices and|t;,t, — 1] gives the bound (5). For a network composed

o of a single source-terminal pair and a single link, this bound
F.={ieV.| (i,j) € E. for somej € V_ }. is tight.



of the terminals. For the case wheyg = 0.75 for all edges,
a curve of the expected steady-state value of this lower bound
(computed by taking empirical averages) is shown in Figure 3.
This figure gives a lower bound on the steady state expected
number of packets queued in the network when packets enter
the network at vertex according to a Bernoulli processes with
rate \.

By applying Jensen’s inequality to the right-hand side of
(6), we establish the following lower bound on the expected

A steady-state queue length.
Fig. 3. Lower bound on achievable backlog for the simple multicast network
with ¢ = 0.75. lim inf E[Q(t)] >
t—o00
Using the bound (5), sup San—> |1— [ (-gy)|n
n>0,ceC icF. i:(i,)) € E.
to1 o1 c J:(t,j3)€E:

Qty) = Z A(k) — Z D(k) This lower bound relates the queue length to the minimum-cut
k=0 k=0 capacity of the network. The lower bound can be made arbi-
to—1 trarily large, and hence the ratecannot be stably supported,

> Z Ak) — Z 1 — H (1 _ S(ij)(k)) if there exists some cut with
k=t, i€F, J:(4,5)EE.

Since this holds for all timeg; and all cutsc, A> Z I - H (1 —qij)

i€EF, j:(i,5)EE.

tz_l . g . . .
Q(t2) > max Z A(k) 72 1— H (1 _ S(i,j)(k)) This condition is exactly the necessity part of the capacity

,t
EREE AN theorem for erasure networks [9].

In the case of Bernoulli arrivals and Bernoulli link connec- U bound lenath f dom i ding i
tivities, the argument of the maximum is simply a Iinea(r:' pper bound on queue fength for random linéar coding in

combination of binomial random variables. That is, the one-hop multicast network
1 Now we will analyze the queue length for the one-hop
Z, = Z A(k) multicast problem under a simple random linear coding strat-
egy that we call ‘code over queue contents’. This strategy
sequentially performs rounds of encoding, each of which lasts
several time slots. When a round of encoding begins, all

k=t—n

is a binomial random variable with parametersand \. For

eachi € I, packets in the queue are selected. Cebe the total number
t—1 of packets in the queue at the start of a round of encoding.
Yein = Z 1-— H (1 — S(i7j)(/<:)) ) Encoded packets formed from random linear combinations of
k=t—n §:(4,5) EEe these packeté’ are then sent to the receivers. Any arrivals to

the queues during a round of encoding will not be considered
until the next round of encoding. The round of encoding ends
i\gﬂen all receivers can decode @éllpackets. Thesé€' packets

are removed from their queue, then the next round of encoding
begins.

Each encoded packet is a random linear combination of
the C' packets in the current coding block and is formed in
®)  the following way. A set of coefficients; for i = 1,...,C

are randomly and uniformly chosen from the finite fiéld
The random variableg,, — Zich Y..n are fairly straight- and these coefficients are used as weights in forming a linear
forward to analyze individually. However, the expectation afombination using addition and multiplication oveg. The
their supremum, particularly since these random variables aiee of the finite fieldd is a power of two. A receiver can
correlated, is significantly more difficult to analyze. As wasecover the original’ packets once it has receivédlinearly
shown in the previous section, we have obtained analytidalependent encoded packets. The results presented below
results in a special case. hold for any finite fieldF; with 2 < d. The time to transmit

Here we will also show a simple network example whera coding block as well as the queue backlog are maximized
a lower bound can be computed numerically. Consider tfer ¢ = 2 and this case is used in obtaining our upper bound.
network shown in Figure 2. A cut separating the sourfm As described above, we assume the use of random linear
terminalst,; andts is also shown in the figure. In this examplecodes, as introduced in [11]. For the one-hop multicast prob-
there are seven directed cuts separating the source from daah, digital fountain codes, such as Tornado codes introduced

is a binomial random variable with parametersand 1 —
I1;. jyer. (1 — @ij)- Since the arrival and link connectivity
processes are memoryless, the joint probability mass funct
of Z, and all of theY. ; ,, is independent of.

The steady-state expected backlog is lower bounded as

sup {Zn - Z Yczn}

n>0,ceC i€k,

liminf E[Q(t)] > E




in [4], are also applicable and are known to be capacitysing this bound ofE[T'(x)], we get the upper bound

achieving in the limit of large block sizes. Our results on the p(2a(z) — 1) — 1
queue length for packet coding do not directly apply whew + E[h(Q(ti+1) | Q(t;) = 2] — h(z) < -
fountain codes are used,; this is because we allow for a variable P (7)

block size and the coding overhead that results for fountain

codes with small block sizes is not captured in our resufhere

However, similar techniques may be useful in analyzing the () x +24/(0.78z + 3.37) In(M) + 2.61
a\xr) = .

gueue length performance for digital fountain codes. z

Recall thatQ(t) denotes the number of packets in the Tng value ofr > 0 that maximizes @) is
queue at timet. The queue length proces3(t) generally B )
does not evolve as a Markov chain. This is because each x = 41n(M) (ﬂ)
round of encoding lasts several time slots, and the distribution 1—-p/) "~
of the length of a round of encoding is not memorylesgng the associated maximum is
Although the procesg)(t) is not a Markov chain, the process

2
Q(to), Q(t1), Q(t2), . .. is a Markov chain, wherey, t1, ts, . .. Aln(M) (p) n (8« In(M) + 6) P
are the starting times of successive rounds of encoding. Thus, IL=p I—p
we can apply tools for Markov chains to analyze the average ]

value of theembedded Markov chain Q(¢,,). This will provide
the steady-state average value of the queue backlog at the start

of each round of encoding. This theorem shows that the average queue length at departure

Before presenting Theorem 2, the main result of this sectih, os for the ‘code over queue contents’ strategy scales as
we will state a general lemma that is used in its proof. A pro%(ln(M))

of this lemma can be found in [5].

o IV. CONCLUSIONS
Lemma 4. Let X () be a Markov chain with countable state In this paper we considered a simple multicast model, where
spaceX’. Letr : X — R be a cost associated with being in bap P '

: . ¥ “a single transmitter sends packetsib receivers over loss
each state iit’, and leth : X — R be a nonnegative function |. 9 o P . Y
links. The transmitter is equipped with a queue, and our goal

on . Then was to find a transmission strategy that minimizes the expected
. . number of packets in the queue. While finding the queue
h}?_ﬂip -1 ZE[T(XUC))] < length minimizing strategy is still an open problem, here we

k=0 found a lower bound on achievable performance and an upper

EEE {r(@) + E[A(X(t +1)) | X(t) = 2] = h(2)} - bound on the performance for a random linear coding strategy.

Specifically, we have shown that queue length must scale as

_ Qe(ln(M)), and that queue length under the random linear
Theorem 2 The steady-state average of the embeddedging strategy scales éxIn(M)). Hence, the random linear

Markov chainQ(t;) satisfies coding strategy is order-optimal with respect to the number of
L& receivers.
lim sup Z E[Q(tr)] < In addition to our analysis for the one-hop multicast model,
noo M+ 1 k=0 we provided a framework for analyzing multicast in more

A \? Y general erasure networks. This framework provides a method
4In(M) (q — A) + (8\/1H(M) + 6) 74— forlower bounding the minimum achievable total queue back-
log throughout a network. Here we have shown an example

. ) where a lower bound on achievable backlog was computed
Proof: Throughout this proof, we will lep = A/q denote yymerically for a two-hop network.

load factor associated with the queue. To prove the upper

bound, we will use the bound given in Lemma 4. Specifically, ACKNOWLEDGMENT
we will use the function 9 The authors wish to thank the anonymous reviewers, whose
h(z) = : ) helpful comments helped to improve the paper.
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